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Introduction	
	
In	this	paper,	we	examine	one	possible	system	for	generating	probabilities	and	statistics	for	
NCAA	Division	I	College	Football.		The	model	is	broken	down	into	a	series	of	four	processes	
which	must	be	executed	in	order:	
	

1. Generate	team	ratings	based	on	game	scores	and	preseason	bias	
2. Compute	probabilities	of	team	season	outcomes	
3. Perform	many	random	season	simulations	and	count	the	frequency	of	teams	making	

the	playoffs	or	championship	game	
4. Aggregate	the	data	from	Steps	1	through	3	

	
The	objective	of	this	document	is	to	describe	the	methodologies	employed	during	each	sub-
process	to	produce	the	final	statistics	and	probabilities.		The	following	table	depicts	the	
various	season	projections	and	probabilities	produced	by	the	routines	along	with	their	
method	of	derivation.	
	
Projection/Probability	 Derived	From	
projectedWins	 Win/loss	probabilities	(Step	1)	
projectedLosses	 Win/loss	probabilities	(Step	1)	
projectedConferenceWins	 Win/loss	probabilities	(Step	1)	
projectedConferenceLosses	 Win/loss	probabilities	(Step	1)	
projectedConferenceDivisionWins	 Win/loss	probabilities	(Step	1)	
projectedConferenceDivisionLosses	 Win/loss	probabilities	(Step	1)	
probabilityToWinNextGame	 Win/loss	probabilities	(Step	1)	
probabilityToWinConference	 Poisson	binomial	(Step	2)	
probabilityToWinConferenceDivision	 Poisson	binomial	(Step	2)	
probabilityToFinishWithJustOneLoss	 Poisson	binomial	(Step	2)	
probabilityToFinishWithTwoOrFewerLosses	 Poisson	binomial	(Step	2)	
probabilityToWinOut	 Poisson	binomial	(Step	2)	
probabilityToLoseOneMoreGame	 Poisson	binomial	(Step	2)	
probabilityToLoseTwoOrMoreGames	 Poisson	binomial	(Step	2)	

probabilityToMakePlayoffs	 Monte-Carlo	(Step	3)	
probabilityToMakeChampionshipGame	 Monte-Carlo	(Step	3)	
	
	
Step	1:	Generate	Team	Ratings	
	
The	CompughterRatings	model	(http://www.compughterratings.com/theory	[1])	
uses	an	advanced	proprietary	mathematical	model	to	produce	a	variety	of	ratings	
estimates	for	individual	teams.		A	Linear	Least	Squares	model	is	used	to	produce	initial	
ratings	estimates	and	those	estimates	are	refined	using	a	Maximum	Likelihood	
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technique.		The	ratings	produced	are	overallPerformanceRating,	offensiveRating,	and	
defensiveRating.		From	these	ratings,	additional	ratings	are	derived:	powerRating,	
strengthOfScheduleRating,	and	futureStrengthOfScheduleRating.		Ordinal	rankings	are	then	
assigned	to	each	team	in	each	of	these	categories.	
	
The	algorithm	takes	into	consideration	the	following	factors:	
- Game	scores	
- Margin	of	victory	
- Home	field	advantage	
- Strength	of	schedule	
- Strength	of	opponents,	opponents’	opponents,	etc	
- Game	recency	(later	games	weighted	higher)	
	
Factors	such	as	conference	strength	are	implicitly	included	in	the	model.	
	
The	following	factors	are	not	included	in	the	model:	
- Field	/	weather	conditions	
- Player	injuries	or	disciplinary	actions	
- Coaching	changes	
- Time	of	day	
- Betting	lines	
- Officiating	crews	
- Any	other	external	factors	
	
Game	Predictions	
	
As	noted	above,	the	CompughterRatings	model	[1]	generates	an	Offensive	Rating	and	
Defensive	Rating	for	each	team.		These	two	ratings	can	be	used	together	to	make	
predictions	about	future	games.		To	understand	how	these	two	ratings	are	computed,	
consider	a	series	of	n	games	played	between	a	finite	group	of	competitors	of	order	p.		If	n	is	
large	enough	and	the	p	teams	are	all	“connected”	in	the	series,	then	we	can	use	the	score	
outcomes	from	the	games	played	to	predict	future	scores	between	any	two	teams.		
Furthermore,	we	can	compute	the	probability	of	any	given	team	defeating	another	team.	
	
Let	X	represent	the	design	matrix	as	follows:		
	

𝑋 = 	

⋮
𝑥f,f 𝑥f,g … 𝑥f,i ⋮ 𝑥f,ijf 𝑥f,ijg … 𝑥f,gi
𝑥g,f 𝑥g,g … 𝑥g,i ⋮ 𝑥g,ijf 𝑥g,ijg … 𝑥g,gi
𝑥k,f 𝑥k,k … 𝑥k,i ⋮ 𝑥k,ijf 𝑥k,ijg … 𝑥k,gi
𝑥l,f 𝑥l,g … 𝑥l,i ⋮ 𝑥l,ijf 𝑥l,ijg … 𝑥l,gi
⋮ ⋮ … ⋮ ⋮ ⋮ ⋮ … ⋮

𝑥gmnf,f 𝑥gmnf,g ⋱ 𝑥gmnf,i ⋮ 𝑥gmnf,ijf 𝑥gmnf,ijg 𝑥gmnf,gi
𝑥gm,f 𝑥gm,g … 𝑥gm,i ⋮ 𝑥gm,ijf 𝑥gm,ijg … 𝑥gm,gi

⋮
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Here,	X	is	a	2n	x	2p	matrix.		The	first	p	columns	on	the	left-hand	side	of	the	matrix	store	the	
offensive	rating	coefficients	for	all	p	teams.			Similarly,	the	right-hand	side	of	the	matrix	
stores	the	defensive	rating	coefficients	for	all	p	teams.		For	each	game	played,	there	are	2	
rows	in	X.		The	first	row	represents	how	team	i	performed	against	team	j	and	the	second	
row	represents	how	team	j	performed	against	team	i.		We	will	use	values	of	0’s,	-1’s,	and	1’s	
to	make	these	representations	clear.	
	
Example	1.1:	Let’s	suppose	we	have	a	very	simple	series	of	n	=	3	games	between	p	=	4	
opponents.		To	meet	our	criteria	of	connectedness,	let’s	also	assume	that	Team	1	played	
Team	2,	Team	2	played	Team	3,	and	Team	3	played	Team	4.		The	hypothetical	outcomes	of	
these	3	games	are	depicted	as	follows:	
	
Team	1	defeats	Team	2	by	a	score	of	45-28.	
Team	2	defeats	Team	3	by	a	score	of	17-10	
Team	3	defeats	Team	4	by	a	score	of	31-30	
	
We	can	represent	these	equations	in	matrix	form	as		
	
	

𝑋rss(t	u	l) ⋮ 𝑋vws(t	u	l) (t	u	x)
∗ 		

𝑏rss(l	u	f)
𝑏vws(l	u	f) (x	u	f)

= 		
𝑦f(g	u	f)
𝑦g(g	u	f)
𝑦k(g	u	f) (t	u	f)

	

	
And	using	our	scores	in	the	column	vector	y,	we	get:	
	

⋮
1 0 0 0 ⋮ 0 −1 0 0
0 1 0 0 ⋮ −1 0 0 0
0 1 0 0 ⋮ 0 0 −1 0
0 0 1 0 ⋮ 0 −1 0 0
0 0 1 0 ⋮ 0 0 0 −1
0 0 … 1 ⋮ 0 0 −1 0

⋮ (t	u	x)

∗ 		

𝑏rssf
𝑏rssg
𝑏rssk
𝑏rssl
𝑏vwsf
𝑏vwsg
𝑏vwsk
𝑏vwsl (x	u	f)

= 		

45
28
17
10
31
30 (t	u	f)

	

	
From	here,	we	can	use	techniques	described	in	the	Compughter	Ratings	Theory	[1]	to	
ensure	our	matrix	equation	is	solvable	for	the	ratings	vector	b.		¨	
	
Now	that	we	have	our	offensive	and	defensive	ratings	estimates,	we	can	use	those	together	
to	predict	the	game	score	between	any	two	teams.		First	note	that	every	game	prediction	is	
actually	a	pair	of	predictions:	1)	Team	A’s	offensive	performance	against	Team	B’s	
defensive	performance;	and	2)	Team	B’s	offensive	performance	against	Team	A’s	defensive	
performance.	
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Let	𝑡𝑒𝑎𝑚�
rssrepresent	the	offensive	rating	of	𝑡𝑒𝑎𝑚�	and	𝑡𝑒𝑎𝑚�

vwsrepresent	the	defensive	
rating	of	𝑡𝑒𝑎𝑚�	for	any	1 ≤ 𝑖 ≤ 𝑝.		Then	the	number	of	points	that	𝑡𝑒𝑎𝑚�	is	expected	to	
score	against	𝑡𝑒𝑎𝑚�	is	given	by	𝑡𝑒𝑎𝑚�

rss −	𝑡𝑒𝑎𝑚�
vws.	

	
Example	1.2:	Suppose	the	offensive	and	defensive	ratings	for	Team	A	and	Team	B	are	
computed	as	in	the	following	table:	
	
Team	 Offensive	Rating	 Defensive	Rating	
Team	A	 34.0111	 2.7216	
Team	B	 32.8420	 10.2093	
	
Then	in	a	hypothetical	matchup	between	Team	A	and	Team	B,	the	expected	outcome	would	
be:	
	
Team	A	scores	34.0111 − 10.2093 = 23.8018	points	against	Team	B;	and	
Team	B	scores	32.8420 − 2.7216 = 30.1204	points	against	Team	A.	¨	
	
	
Preseason	Ratings	
	
Early	in	the	season	when	few	or	no	games	have	been	played,	our	assumption	of	
“connectedness”	between	teams	is	invalid.		Our	matrix	equations	are	simply	not	solvable.		
We	can	fix	this	by	adding	rows	to	our	matrix	equations	to	ensure	teams	are	connected.	
Since	little	is	known	about	any	team’s	potential	performance	when	no	games	have	been	
played,	preseason	team	ratings	can	be	represented	as	a	function	of	previous	seasons’	
ratings,	along	with	a	Bayesian	correction	to	account	for	the	loss	of	key	players.		These	
terms	can	then	be	progressively	dampened	out	as	the	season	progresses	and	the	teams	
become	more	and	more	connected.	
	
To	think	about	this	in	equation	form,	consider	the	fact	that	each	team	has	two	pieces	of	
information	to	be	added	to	our	matrix:	a	preseason	offensive	rating	and	a	preseason	
defensive	rating.		So	with	p	teams,	there	would	be	2p	equations	of	data	to	add	to	our	matrix	
equation.		Furthermore,	observe	that	adding	rows	to	the	design	matrix	X	and	the	column	
vector	y	will	not	change	the	dimension	of	our	solution	vector	b.		To	see	this	in	matrix	form,	
our	previous	equation	
	

𝑋rss(gm	u	i) ⋮ 𝑋vws(gm	u	i) (gm	u	gi)
∗ 		

𝑏rss(i	u	f)
𝑏vws(i	u	f) (gi	u	f)

= 		

𝑦f(g	u	f)
𝑦g(g	u	f)

⋮
𝑦m(g	u	f) (gm	u	f)

	

	
	
becomes	
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𝑋rss(gi	u	i)
¢ ⋮ 𝑋vws(gi	u	i)

¢

𝑋rss(gm	u	i) ⋮ 𝑋vws(gm	u	i) (gijgm	u	gi)

∗ 		
𝑏rss(i	u	f)
𝑏vws(i	u	f) (gi	u	f)

= 		

𝑦f(g	u	f)
𝑦g(g	u	f)

⋮
𝑦i(g	u	f)
𝑦ijf(g	u	f)

⋮
𝑦ijm(g	u	f) (gijgm	u	f)

	

	
where	
	
	𝑋rss(gi	u	i)

¢ 	and	𝑋vws(gi	u	i)
¢ 	represent	the	2p	x	p	matrices	of	offensive	ratings	coefficients,	

respectively,	and	
𝑦f(g	u	f)
𝑦g(g	u	f)

⋮
𝑦i(g	u	f) (gi	u	f)

	

	
represents	the	vector	of	offensive	and	defensive	ratings	pairs	for	each	team	1	 ≤ 𝑖 ≤ 𝑝.	
	
	
Step	2:	Forecast	Season	Outcomes	
	
More	complex	season	projections,	related	to	a	variety	of	scenarios	and	not	related	to	a	
single	game,	are	estimated	using	the	Poisson	Binomial	Model.		Examples	of	these	include	a	
team’s	probability	to	finish	the	season	with	just	one	loss	or	its	probability	to	lose	two	or	
more	of	its	remaining	games.	
	
Poisson	Binomial	Distribution	
	
Since	a	team’s	win	probabilities	are	computed	each	week	(in	Step	1)	for	all	of	its	remaining	
opponents,	Poisson’s	Binomial	model	was	determined	to	be	sufficient	solution	for	
predicting	𝑘	wins	or	losses	out	of	𝑛	remaining	games.		As	a	matter	of	computational	
convenience,	the	Poisson	Binomial	probabilities	are	estimated	using	a	well-known	
recursive	method	[3]	which	is	known	to	be	stable	when	𝑛	is	less	than	approximately	20	
(which	is	always	the	case	in	College	Football).	
	
The	recursive	formula	used	for	estimating	the	Poisson	Binomial	probability	mass	function	
[3]	is	given	by	
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Pr 𝐾 = 𝑘 = 		

1 − 𝑝�

m

��f

𝑘 = 0

1
𝑘 −1 �nf Pr 𝐾 = 𝑘 − 𝑖 𝑇(𝑖)

�

��f

𝑘 > 0

	

	
	
where	

𝑇 𝑖 = 	
𝑝�

1 − 𝑝�

�m

��f

	

	
Using	the	estimated	win	probabilities	(computed	in	Step	1)	for	every	team	against	their	
future	opponents,	this	formula	can	be	used	to	estimate	the	probabilities	of	winning	all	
remaining	games,	winning	all	but	𝑥	remaining	games,	losing	at	most	𝑥	games,	and	many	
other	scenarios.	
	
Sample	PHP	code	to	test	out	the	Poisson	Binomial	recursive	formula	can	be	found	in	the	
following	repository	on	Github:	
	
https://github.com/stevenmpugh/PHP_Statistics/blob/master/PoissonBinomialDistribution.php	
	
	
Step	3:	Run	Random	Season	Simulations	
	
For	predicting	the	probabilities	of	making	the	4-team	playoff	or	the	national	championship	
game,	a	proprietary	Monte	Carlo	method	is	employed.		Once	team	ratings	are	generated	
based	on	all	games	played,	we	can	use	random	variations	of	team	offensive	and	defensive	
ratings	to	produce	a	robust	simulation	of	the	remaining	season.		We	can	then	simulate	the	
remaining	season	hundreds	or	even	thousands	of	times	and	rank	the	teams	at	the	end	of	
each	season	simulation	based	on	factors	that	we	believe	represent	the	human	components	
of	team	rankings	(i.e.,	the	College	Football	Playoff	Selection	Committee).		After	this	process	
is	complete,	we	are	left	with	a	subset	of	teams	whose	probabilities	of	making	the	4-team	
playoff	sum	up	to	400%.		Similarly,	we	can	identify	the	subset	of	teams	most	likely	to	finish	
in	the	Top	2,	with	their	respective	probabilities	summing	to	200%.	
	
Monte-Carlo	Simulations	
	
Each	Monte-Carlo	iteration	consists	of	three	steps	repeated	hundreds	or	thousands	of	
times:	
	

1. Randomize	offensive	and	defensive	ratings	for	teams	based	on	known	input	
estimates	

2. Simulate	the	remaining	season	using	the	randomized	offensive	and	defensive	
ratings	
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3. Rank	the	teams	at	the	end	of	the	simulated	season	by	a	known	set	of	quantifiers	and	
log	the	results	

	
Once	all	of	the	iterations	have	completed,	we	are	left	with	many	possible	scenarios	that	are	
legitimate	season	outcomes.		Moreover,	not	only	do	we	know	which	outcomes	are	possible,	
but	we	also	know	the	probability	of	each	scenario	occurring.		For	example,	if	Team	A	ended	
up	in	the	Top	4	of	the	rankings	357	times	out	of	1,000	iterations,	then	the	model	would	
suggest	that	Team	A	has	about	a	35.7%	probability	of	making	the	4-team	playoff.		Similarly,	
if	Team	A	ended	up	in	the	Top	2	of	the	rankings	135	times,	then	the	model	suggests	that	
Team	A	has	a	13.5%	chance	to	make	the	Championship	Game.	
	
There	are	two	parts	of	our	Monte-Carlo	method	that	involve	more	art	than	science:	
	

• How	much	variance	do	we	apply	to	the	offensive	and	defensive	ratings?	
• How	do	we	quantitatively	assess	the	strength	(and	therefore,	the	rank)	of	each	team	

at	the	end	of	each	iteration.	
	
We	will	look	at	each	of	these	questions	in	the	following	sections.	
	
Randomizing	Team	Strength	
	
Suppose	we	have	computed	the	offensive	and	defensive	ratings	for	𝑝	teams	(this	is	done	in	
Step	1).		Let	𝑠rss	and		𝑠vws	represent	the	standard	deviations	of	the	offensive	and	defensive	
ratings,	respectively.		Let	𝑅(𝑘, 𝑔)�

rss, 𝑅(𝑘, 𝑔)�
vws ∈ 0,1 	be	two	distinct	randomly	generated	

real	numbers	associated	with	the	𝑖��	team	and	the	𝑔��	game	of	the	𝑘��	iteration,	where	1 ≤
𝑖 ≤ 𝑝,	1 ≤ 𝑘 ≤ 𝐾,	and	𝐾	is	the	total	number	of	iterations.	
	
Then	we	can	randomly	adjust	the	offensive	and	defensive	ratings	for	each	team,	each	game,	
and	each	iteration	using	the	inverse	of	the	Cumulative	Normal	Distribution	(NORMINV)	
function	(sometimes	referred	to	as	the	“probit”	function	[2])	as	follows:	
	

𝑡𝑒𝑎𝑚�
rss �

= 𝑁𝑂𝑅𝑀𝐼𝑁𝑉 𝑅(𝑘, 𝑔)�
rss, 𝑡𝑒𝑎𝑚�

rss, 𝑐 ∙ 𝑠rss	 	
and	

𝑡𝑒𝑎𝑚�
vws �

= 𝑁𝑂𝑅𝑀𝐼𝑁𝑉 𝑅(𝑘, 𝑔)�
vws, 𝑡𝑒𝑎𝑚�

vws, 𝑐 ∙ 𝑠vws	 	
	
where	𝑐	is	a	scalar	chosen	large	enough	to	vary	the	ratings	by	the	desired	magnitude	(i.e.,	
the	artistic	choice).	
	
By	randomly	adjusting	each	team’s	offensive	and	defensive	ratings	for	every	simulated	
game	within	every	simulated	season,	and	staying	within	a	certain	threshold	of	variance,	we	
are	able	to	introduce	an	element	of	random	chance	into	every	game.		The	next	step	is	then	
to	measure	team	performance	based	on	each	simulation’s	randomized	outcome.	
	
Measuring	Team	Performance	
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At	the	end	of	each	iteration,	we	use	a	simple	arithmetical	technique	to	rate	each	team’s	
performance	and	assign	an	ordinal	ranking.		This	technique	is	comparable	to	the	RPI	
(Rating	Percentage	Index)	system	utilized	by	the	NCAA	for	ranking	College	Basketball	
teams.		The	strength	factors	employed	and	their	associated	weights	can	be	specified	in	an	
infinite	number	of	combinations,	but	we	will	aim	to	identify	a	system	that	produces	
reasonable	results	and	keep	it	consistent	throughout	all	iterations	of	the	season	
simulations.	
	
The	following	table	depicts	the	factors	included	in	the	performance	metric	alongside	one	
possible	combination	of	weights	to	be	used.		Note	that	these	factors	and	weights	are	
currently	in	development	and	are	subject	to	change.	
	
Factor	 Min	 Max	 Weight	
Overall	Performance	Rank	 1	 128	 1	
Power	Rank	 1	 128	 1	
Total	Expected	Wins	(Actual	+	Projected)	 0	 13	 10	
Actual	Top	10	Wins	 0	 5	 40	
Projected	Top	10	Wins	 0	 5	 20	
Actual	Top	25	Wins	 0	 5	 20	
Projected	Top	25	Wins	 0	 5	 10	
Probability	to	Win	Conference	 .01	 .99	 128	
Strength	of	Schedule	 1	 128	 .5	
Future	Strength	of	Schedule	 1	 128	 .5	
Out	of	Conference	Strength	of	Schedule	 1	 128	 .5	
	
It’s	important	to	note	that	there	may	be	certain	conditions	which	disqualify	a	team	from	
being	ranked	at	all.		Since	we	are	primarily	interested	in	the	Top	4	and	Top	2	teams	from	
each	iteration,	there’s	simply	no	need	to	rank	a	team	which	has	already	exceeded	a	certain	
number	of	losses,	particularly	when	their	schedule	is	known	to	be	relatively	weak.		For	
example,	in	College	Football,	if	a	team	such	as	Western	Michigan	who	plays	in	a	non-Power	
5	conference	(MAC	Conference)	has	already	achieved	2	losses,	then	its	ranking	will	be	
assigned	a	zero	and	the	team	will	be	disqualified	from	the	Top	4	and	Top	2	rankings	(for	all	
iterations).	
	
At	the	end	of	each	iteration,	teams	which	are	assigned	non-zero	rankings	are	stored	for	
later	reference.		Once	all	iterations	have	completed,	the	number	of	Top	4	and	Top	2	
rankings	for	each	team	are	counted.		If	we	divide	each	team’s	count	by	the	total	number	of	
iterations,	we	finally	arrive	at	the	team’s	probability	of	finishing	the	season	ranked	in	the	
Top	4	or	Top	2.		To	illustrate	this,	consider	the	output	of	Top	4	probabilities	in	the	table	
below.		Note	that	teams	with	a	probability	less	than	about	2%	have	been	omitted	for	
brevity,	but	the	comprehensive	sum	of	all	probabilities	will	be	exactly	400%.	
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team	 probability	 	 team	 probability	
Ohio	State	 0.2962	 	 Wisconsin	 0.0487	
Clemson	 0.2923	 	 Georgia	 0.0474	
Alabama	 0.2744	 	 Southern	Cal	 0.0449	
Tennessee	 0.2526	 	 LSU	 0.0436	
Oklahoma	 0.2487	 	 Florida	 0.0436	
TCU	 0.2256	 	 Iowa	 0.0385	
Michigan	 0.2038	 	 Notre	Dame	 0.0372	
Baylor	 0.1628	 	 North	Carolina	 0.0359	
Stanford	 0.1513	 	 Nebraska	 0.0308	
Arkansas	 0.1397	 	 Western	Kentucky	 0.0295	
Mississippi	 0.1385	 	 North	Carolina	St	 0.0231	
Michigan	St	 0.1013	 	 Oregon	 0.0231	
Mississippi	St	 0.1013	 	 Texas	A&M	 0.0231	
West	Virginia	 0.0846	 	 San	Diego	St	 0.0218	
Utah	 0.059	 	 UCLA	 0.0218	
California	 0.0513	 	 Florida	St	 0.0205	
Washington	 0.05	 	 	 	
	
	
Step	4:	Aggregate	the	Probabilities	and	Statistics	
	
The	final	step	is	simply	to	aggregate	the	statistics	and	probabilities	computed	in	the	first	3	
steps,	which	can	be	done	with	any	choice	of	software.		At	the	same	time,	we	can	include	
some	other	useful	statistics	which	were	derived	from	scores	data	during	our	calculation,	
but	did	not	contribute	directly	to	any	of	our	derived	results.	
	
Other	Supporting	Statistics	
	
A	number	of	other	basic	statistics	are	derived	by	applying	simple	arithmetic	to	the	actual	
game	outcomes.		These	statistics	include	but	are	not	limited	to:	
	
- Top	25	win/loss	record	
- Largest	margin	of	victory/defeat	
- Best	quality	win	
- Record	against	teams	with	winning/losing	records	
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